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I. INTRODUCTION

IN A RECENT PAPER, the multiple scale Fourier transformation has been applied to describe the
far-field asymptotic behaviour of nonlinear dispersive waves (Jeffrey and Kawahara [1]). It
was shown that the use of the multiple scale Fourier transformation can systematize a nonlinear
asymptotic perturbation analysis, and that the perturbation analysis can then be reduced to
simple manipulations with respect to Dirac delta functions involving the multiple scale wave-
number and frequency space.

In the present paper, we apply the multiple scale Fourier transformation to oscillation and
wave problems which include damping or dissipative effects. When these effects are included in
a system, the solution in the physical space may involve exponential changes, but exponential
functions do not allow a Fourier transformation in the ordinary sense. However, we can intro-
duce a Fourier transformation for exponential functions if we extend the notion of a Fourier
transformation to include generalized functions. A Fourier transformation of an exponential
function can then be represented by means of a delta function in a complex Fourier space
(Bremermann [2], Challifour [3]). Therefore, in terms of an appropriate definition of the delta
function in a complex Fourier space, we can proceed with a perturbation analysis by means of
simple manipulations with respect to delta functions, even though the system under consideration
may include damping or dissipative effects.

As a simple illustrative example, we consider the perturbation approximation of a linear oscilla-
tion problem involving small damping. The essential idea can be fully explained in terms of
this example, and thereafter applications to general problems will be a straightforward matter.

In Section 2, we start by solving the problem in terms of the derivative expansion method in
order to make clear the correspondence between the physical space representation and the
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1332 A. JEFFREY and T. KAwAHARA

Fourier space representation. In Section 3, we show how the Fourier transformation should be
extended so as to include exponential changes. Once the extension is introduced, the calculations
become straightforward, as is shown in the latter half of Section 3. Some final remarks are made
in Section 4, and an introduction to the notion and use of a delta function in a complex space is
given in the Appendices.

2. SOLUTION BY MEANS OF THE DERIVATIVE EXPANSION METHOD

We consider the following linear oscillation problem involving small damping
d2f dfdr--T + 2e 4 + f = 0, (2.1)
dft- dt

where the initial conditions are given by
d f(0)

f(0) = a, dt = 0. (2.2)

This problem admits the exact solution

f(t; --) = a e -" [cos(1 - 62)1 /2 t + e(l - E2 )- 1/2 sin(1 - C
2)1/2t]. (2.3)

First of all, let us solve this problem in terms of the derivative expansion method. Introducing
the multiple time scales t. = &'t (m = 0, 1,..., M) and the expansions

pt; 8) "f.(to, t1,. tM), (2.4)
"=0d = (2.5)

into (2.1) and (2.2), we find the set of perturbation equationsa2fo
Ot---° + fo = 0, (2.6a)

a 2fl 2f aff

2o + f + 2 toot, + 2 = 0, (2.6b)

2. + f2 + 2a-f + 2a 2 + a
0 2 0 -01

t. (2.6c)

and the boundary conditions

fo(0...,0) a, f(0,...,0) = f 2(0,...,O) = 0, (2.7a)

fo(O ...,O) , f,(O .... 0) + fo(O,..., 0) ,
a~to  tato  Ott

~f2(O ... ,) + fj(O0...,O) + "f...,0) , (2.7b)
at 0 t Iit 2

i l i | . .l l ,~ 1 |, i" " - - H -1
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The solution of (2.6a) is given by

fo = Ao e' O + c.c., (2.8)

where Ao is a complex function of the slow variables t1, t2 ,..., and c.c. denotes the complex
conjugate of the preceding term.

It follows from (2.6b) that

at2 + f1 = -2 + A) eiO + c.c. (2.9)

The non-secularity condition for (2.9) gives
aAo- + A ° = 0, (2.10)

and the non-secular solution is then given by

= A, e ' O + c.c. (2.11)

Proceeding to (2.6c) we obtain the non-secularity condition
2AA + A° + 2Ao 2Ao 0 .

26t0 + A + 2 +(2i-+ t,=0. (2.12)

Solving (2.10) we get

Ao(t 1, t 2, ...) = Bo(t 2, .. ) e -, (2.13)

and substituting this into (2.12), we obtain

IA = -A I B + -B. e- (2.14)

at, at2  2 )}

The solution A, for (2.14) becomes bounded (or J/ fo - 0 as t - oo) if
aBo
t2 + 2Bo  0, 

(2.15)

and is then given by
AI(Il, t2 ,....) = B10t2,... )e-rl  (2.16)

From (2.15) we obtain

B0(t2, t3, ... ) = CO(t 3  ... ) e- '2 , (2.17a)

so that

Ao(t , t2  .. .) CO(tP ... )e- 11 /2. (2.17b)

The next higher order condition for the non-secularity is found to be

2i( + A2 ) t (2i A+ - + 2---' + 2 t ; + 02A- + 2.)
it O at2 at +2 3 at at2 at2
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Similar calculations are also possible for higher order terms, and up to the 0(e4 )-solution we
arrive at

f = Eo eitot1-it 2/2 -0 4/8 + C.c.

+ s(D i ei ° -tl -it2/2 + C.C.)

+ g2(C2 eito-t -it 2/2 + C.C.)

+ S2 (B3 e it oi + c.c.) + g
4(A4 eif° + c.c.). (2.19)

The boundary conditions (2.7) determine the coefficients of (2.19) successively, giving rise to

E0 =a/2, D1 = -ia/2, C 2 = 0,

B 3 = - ia/4, A4 = 0, (2.20)

where E0, D1, C2, B3, and A4 are assumed to be constants with respect to the slow variables equal
to or slower than t5 , t 4, t3, t 2, and t1, respectively. Consequently, up to the 0(64)-approximation
calculated here, we obtain

f = ae-t eito -it2/2 -14/8- iF e't-i12/2 -
3 eit + c.c.1 + 0(5) (2.21)

= ae- cos t 2 + Fsi I+ t+ sint + 0(W).

It should be noticed here that the solution (2.21) is not a simple expansion in e of the exact
solution (2.3). The expansion of the factor (I - 8

2)1/2 in the exact solution reproduces exactly
the terms in (2.21) up to the order of approximation calculated here. The derivative expansion
that avoids the secularity thus incorporates partial sums, in the sense that the perturbation solu-
tion so obtained is not a simple power series solution in c.

3. MULTIPLE SCALE FOURIER TRANSFORMATION

We shall now solve the problem (2.1) subject to (2.2) in the Fourier space. The Fourier trans-
formation for the function f with multiple scales tot i,..., tM is first introduced as follows:

f(to, t1,... tM) = " g(( 00, 1 ... Iom) exp i otm d,,, (3.1)

0(o, tol ..... 1om) = (2,)m +, J f(to tl .... t) exp -i w.t. } dt.. (3.2)
I- M=0 1=

At the moment we assume that co, o,,. . ., are real.
In agreement with the expansions (2.4) and (2.5), we expand the Fourier amplitude as follows:

00 0)0'o (O, ). t) = E , 8"g (0) o, (0 ..... CO M ) " (3.3)

It then follows from (3.1) that the time derivative should be replaced in the multiple scale Fourier
space by the operation 2

i(co + c, +cc 2 +."" )" (3.4)

I
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The introduction of (3.3) and (3.4) into (2.1) and (2.2) now yields

(-C02 + l) 0o = 0, (3.5a)

(2 + l)g1 - 2(o (w - i)g0o = 0,

I)02 - 2oo(o- - 0(ol + 2cooCo2 2i(o) 0o =0, (3.5c)

while the boundary conditions reduce to

"f o F- dco, = a, "f , F' d,=... =0, (3.6a)

m=0 (3.6b)

= " + C010 1 + C02g0) I d(o= ... 0.
m -O= 0

It will be shown in the course of the calculations that follow how the necessity arises for the
extension of coolCol,..., to the complex plane.

The general solution to (3.5a) may be expressed in the form

((ool,....) = 6(woo - 1)ao(co,w02,- -) + 6( 0)0 + 1)a*(- w1 , - o 2 ... ), (3.7)

where we have made use of the reality of f., and * denotes a complex conjugate. It is readily
seen that the inverse Fourier transformation of (3.7) reproduces (2.8), if we put

Ao(tl, t2 .... )---- " ao(wo1,(o2 ,....)exp { C o.t,. ' do,. (3.8)AO~ I 
--I.. 

f

The substitution of (3.7) into (3.5b) leads directly to the result

= 2( 0  (oo - l)(col -i)ao(colC0 2 ...

2 (o 5(o + l)(ol - i)a*(-ol, -2," " (3.9)

Now it may be seen from the expression (3.9) that g, becomes singular at o = ± 1, because the
denominator o2 - I becomes zero at the origin of the respective delta functions 6(woo - 1)
and b(coo + 1.

These singularities can be eliminated if we can set

6(o - 1) (wol - i)%(wo,, 2 ... ) = 0,

6(0oo + l)(wo, - i~f(-Wot, -( 2 ... ) = O,

at c- 1, or ifwecan set
ao(wol, W2 ... ) - 6(Wot - i) bo((o2 ... (1

a*(-w,, -2,...)- 0 bo(- .. )

So far wo0,g..., have been assumed to be real, so that wo is real, and consequently the ex-
pression 6(w, - J) does not possess a well-defined meaning. As is easily seen from (2.10) and
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(2.13), the expression 6(a), - i) corresponds to the exponential change e-" in the physical space.
The exponential function is not absolutely integrable, and so it has no Fourier transformation
in the ordinary sense. However, we can apply the Fourier transformation for generalized func-
tions to the present example. It is then necessary to extend the Fourier space oo, W1, ... , into a
complex space.

It is possible to introduce the Fourier transformation of an exponential function by appeal to
the theory of Fourier transformations for generalized functions (Challifour [3]). The following
formulae that result are useful for the present analysis:

=[eb
]  2706(w + bi), (3.12a)

=[e'] 2xrb(c + a), (3.12b)

9a[e" e'] = 2W(t + a + bi), (3.12c)

where w has been extended to a complex space, and the details of the extension are shown in
Appendix A. Formula (3.12a) may be used to define 6(w, - i) in the present problem. The re-
lation (3.12b) indicates that a sinusoidal change in the physical space corresponds to a delta
function in the Fourier space, shifted by an amount a, as already noted previously (Jeffrey and
Kawahara [1]). Formula (3.12c) will be useful for other general problems, as is shown in Appendix
B.

For practical calculations, it is convenient to assume merely that wo, Eo1 ...., have all been
extended to complex quantities, and thereafter to carry out calculations in terms of delta func-
tions in a complex space. For the present problem, it suffices to introduce the complex quantity
W1 for the delta function 6(col - i), but we extend (3.1) and (3.2) to make them valid for all complex
Wo=.

The lowest order solution is then given by

9o(Wo1, ,..) = 6((Boo - 1)6(t - i)bo(W2o...) + 6(wo + 1)6(w - i)b*(-W 2' .. ). (3.13)

The non-secular solution for g , that satisfies

('Wo' - l00(oo, O ... ) = 0, (3.14)

is provided by

=(o, 6(wo - l)a1 (c 1,,...) + 6(wo + l)a (-w 1 ," "), (3.15)

which is equivalent to the solution (2.11) in the physical space representation.
Introducing (3.13) and (3.15) into (3.5c), we obtain

(,o - l)g 2(,o, J,...)= 2,o (wl - i) [6(wo - I)a,(wl, ...) + b(owo + I)a*,

+ (wo2 + 2wow 2 - 2iwo) [6(wo - 1)6(w 1 - i) bo(o 2,...) + 6(w o + 1)(w - i)

x b*(-u 2 ... )]. (3.16)

Now, singularities arise at wo = ± I when we solve (3.16) for g2, but they can be eliminated if
we can set

2(w, - i)a,(oj,...) + (1 + 2cu 2)6(WI - i)b(o2,...) = 0,
.. (3.17)

-2(a - )a*(-w,, ...) + (1 - 2o 2)6(o - i)b*(-wo,...) = 0,
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This relation corresponds to (2.12) in the physical space representation.
When we solve (3.17) for a,, a singularity arises at co, = i, because of the appearance of the

factor 6(031 - i)/(wo, - i). To remove such singularities we can choose

(1 + 2w 2 )bo(wo2,...) = 0, (1 - 2co2)b*(-032 ... )=0, (3.18)

that is,

b0(02, 03....= 6(02 + 2)C0( 3
' ... ") b*(-co2, -03, ... ) = 6(02 - 2)c*(-Ow3 ...

(3.19)

Then a1(w1... ) is given by

a (c,.. .) = 6(0c1 - i)b l1(02' ")' (3.20)
a*(031... )= 6(w3, - i0b*(-032, .. )

The inverse Fourier transformations of (3.19) and (3.20) reproduce the physical space representa-
tions (2.16) and (2.17).

Using (3.19) and (3.11) in (3.7), we find

g0 (s 0, (0....) 6(O0 - 1)6(co1 - /)6(02 2")C0(0 3 ... ) + 6(w I1(0 1 - i)(0 2 -2
)

x c*(-a 3 ... ). (3.21)

The inverse Fourier transformation of (3.21) gives

Co(t3, . . .) e ° -' 2 e-" + CO(t 3 ... ) eit+it/2 e-, (3.22)

where CO(t 3 ... ) represents the inverse Fourier transformation of Co( 03,...).
The next order problem is given by

(-3o + 1)03 0 26(w3 - 1)N[(ot - i)a2 + 6(0 1 - i(0 2 + 2)b1 + 6(01 -i)6(0 2 + C)3 C0]

-26( 0 + 1)[(w 1 -- i)a* + 6(+ -- i)(O 2  + 6401  64w2 + 2C 3 . (3.23)

The non-secular condition for g3 is

(ol - ia 2(Co1 ... ) + 6(0. - i) (02 + 2)b 1(C02 ... ) + ( - i)6(0 2 + 2)o 3c0( 3 .... ) = 0,

(3.24)

together with a similar relation involving asterisks. The relation (324) corresponds to (2.18)
in the physical space representation. When we solve (3.24) for a2, there arises the singularity
6(0o3 - i)/(c 1 - i) It can be removed if we set

(W2 + 2)b,(10 2 ,...) + 6(02 + 1) 0 co(3 .... ) 0. (3.25)

Similarly, a singularity related to 6(Wo2 + 4)/(O2 + 1) arises when seeking bt. It also can be avoided
if we set

033co(0 3,...) = 0, (3.26a)

or. if we set
C0 40 3 , W, ... ) f 60 3)d0 4 , ... ). (3.26b)

We can proceed with similar calculations up to any order of approximation in a straightfor-
ward manner. For example, up to the 0(O')-approximation, we obtain
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g = gO + Wg1 + & 9 2 + a
3

9 3 + ; 
4

g 4

6(o 0 - 1)[6(4 1 - i)(0 2 + 2)6(0) 3 )6(0)4 + 64)eo + 5(w 1 - i)6( 2 + 2W5( 3)d 1

+ F26((o - i)6( 2 + + (Co 1 - i)b 3 + 4 ] + 5(O-O + 1)

N[6(wO - i)6( 2 - 2-)6(3) (0)1 -- L)e0 + A5(o0 i)(0 2 - 2W) ( 3)d* + e25(0o - i)

x 6(&O2 - -)cL + d36(vi i)b* + 4a*]. (3.27)

The use of the boundary conditions for this solution, together with the assumption that eo,
dl, c2, b3, and a4 are constants with respect to the slow variables equal to or slower than Co. ,

(04 , 03, W2, and wo, respectively, leads to a solution equivalent to (2.21) in the physical space
representation. Thus, once the delta function in a complex Fourier space has been introduced,
we can carry out the perturbation analysis systematically in the Fourier space.

4. CONCLUDING REMARKS

Sandri [4] applied the multiple scale Fourier transformation to a problem involving expon-
ential changes. However, there was an error in his paper, since he omitted the imaginary unit in

his calculations on page 91. Because of this error, he was unaware of the point discussed in this
paper that the delta function should be extended to a complex space, corresponding to the Fourier
transformation of an exponential function.

If the Fourier transformation is extended to a complex space on a mathematically sound basis,
we can apply the multiple scale Fourier transformation to perturbation problems in general
physical systems, merely keeping in mind that the multiple scales in the Fourier space are complex
quantities. In practical calculations, the use of the delta functions in the complex space may
simplify the manipulations associated with the perturbation analysis.

Although the example treated in this paper is simple, the essential point involved is well illus-
trated. The extension presented in this paper will benefit the Fourier transformation method
when it is applied to solve general wave problems which involve dissipative effects.
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APPENDIX A. FOURIER TRANSFORMATION OF EXPONENTIAL FUNCTIONS

Let us denote the Fourier transformation of f by

ff, 0) ,'(do) fltll" dt, (A.1)
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and define its inverse by

-= fQ) f g(w) e -i'dw. (A.2)

When f and g belong to the class of L, or L2-functions, their Fourier transforms exist in the ordinary sense. If this is
not the case, we must then introduce the notion of generalized functions together with an extended definition for the
Fourier transformation. Such generalized Fourier transformations can be introduced in terms of those for distributions
(Bremermann [2], Challifour [3]) or those for hyper-functions (Imai [5]).

The distribution generated by f(t) is defined by

(f, ) = f f(t) 0(t) dt, (A.3)

where 0 is a test function. Let T be a distribution, then its Fourier transformation is introduced as follows

<.F(T), 0> = (T, YF(, t)>, (A.4)

when the inversion theorem becomes

(.Or -(T)), 0> = (.F '(i(T)), 4)> = (T,4). (A.5)

As an example, let us consider that I denotes the distribution generated by the unit function 1. Then it follows that

<,f'(6), 0> = (6-, e'>, 0(t)> = I. (A.6)

Thus we have .A(6) = 1. By means of (A.5) we have ,F - '(1) = 6. Furthermore, it is easily shown that A '(6) ir and
A(l) = 2xb.

Let us now consider the Fourier transformation of el. Using the formulae (A.3) to (A.5), we have

. (e'=, w, 40(-)> = <e"', 9F(0, 0>

(if " (w) + e"('")deo)

I, 0(w - a)e" "do)

= (2x, 0(w - a)> = 2xo(-a)

= (2nb(€c + a), 0(co)). (A.7)

Hence we have

A(e", o) = 2xh(w + a). (A.8)

The formula (A.8) has been obtained for real a in the above proof. We may also give a similar proof for a complex co,
in order to include the Fourier transformation for an exponential function, say e . It is possible to choose the test function
0 such that it vanishes outside a compact set, and thus the integral of the product 4) e" with e' becomes bounded along
the appropriate integratipn path in the complex space. In such a way, the Fourier transformation of e" may be given as

l(e, w) = 2x6( + bi). (A.9)

Consequently, we arrive at the formulae (3.12) given in the text.
The Fourier transformation of generalized functions can also be introduced in terms of hyper-function theory (Imai

[5]). We do not go into details here, but notice only that the formulae (3.12) are also obtainable in terms of the Fourier
transformation of hyper-functions.

NPPENDIX B. APPLICATION OF THE DELTA FUNCTION IN A COMPLEX SPACE

Let us solve the p4oblem (2.1) subject to (2.2) in a Fourier space, assuming that s is of order unity. We consider the
Fourier transformation

f(t) = g~w)e' dw, (B.1)

?
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where w) is extended to a complex space, and -. is a suitable contour.
Introducing (B.1) into (2.1) and (2.2), we obtain

I-_W 2 + 2irw + I)(a) = 0, (B.2)

k ,(w) dw = a, k iog(w) dw = 0. (B.3)

When we admit delta functions in the complex w-space, the general solution of (B.2) can be expressed as follows:

g(aw) = 6(o - / - iF)C + w( + /T - - ir)D. (B.4)
The inverse Fourier transformation then gives

f(t) = J 3(- -rzr, - ii)C e"' dw

+ f 6((o + VTF-- - ic)D e""' do

=e -"[C expi/l-' t + D exp - i/rZ--T t]. (B.5)

The boundary conditions give the relations
C + D = a, iIT77(C - D) - 8(C + D) = 0, (B.6)

which, in turn, give rise to

Thus we obtain the exact solution (2.3) quite easily in terms of a delta function in a complex Fourier space.
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